Enhancing Bayesian risk prediction for epidemics using contact tracing.
نویسندگان
چکیده
Contact-tracing data (CTD) collected from disease outbreaks has received relatively little attention in the epidemic modeling literature because it is thought to be unreliable: infection sources might be wrongly attributed, or data might be missing due to resource constraints in the questionnaire exercise. Nevertheless, these data might provide a rich source of information on the disease transmission rate. This paper presents a novel methodology for combining CTD with rate-based contact network data to improve posterior precision, and therefore predictive accuracy. We present an advancement in Bayesian inference for epidemics that assimilates these data and is robust to partial contact tracing. Using a simulation study based on the British poultry industry, we show how the presence of CTD improves posterior predictive accuracy and can directly inform a more effective control strategy.
منابع مشابه
Predicting undetected infections during the 2007 foot-and-mouth disease outbreak.
Active disease surveillance during epidemics is of utmost importance in detecting and eliminating new cases quickly, and targeting such surveillance to high-risk individuals is considered more efficient than applying a random strategy. Contact tracing has been used as a form of at-risk targeting, and a variety of mathematical models have indicated that it is likely to be highly efficient. Howev...
متن کاملBayesian Analysis for Emerging Infectious Diseases
Infectious diseases both within human and animal populations often pose serious health and socioeconomic risks. From a statistical perspective, their prediction is complicated by the fact that no two epidemics are identical due to changing contact habits, mutations of infectious agents, and changing human and animal behaviour in response to the presence of an epidemic. Thus model parameters gov...
متن کاملContact tracing and epidemics control in social networks.
A generalization of the standard susceptible-infectious-removed stochastic model for epidemics in sparse random networks is introduced which incorporates contact tracing in addition to random screening. We propose a deterministic mean-field description that yields quantitative agreement with stochastic simulations on random graphs. Both the stochastic simulations and the mean-field equations sh...
متن کاملAn SIR Graph Growth Model for the Epidemics of Communicable Diseases
It is the main purpose of this paper to introduce a graph-valued stochastic process in order to model the spread of a communicable infectious disease. The major novelty of the SIR model we promote lies in the fact that the social network on which the epidemics is taking place is not specified in advance but evolves through time, accounting for the temporal evolution of the interactions involvin...
متن کاملThe Prediction Model for Bankruptcy Risk by Bayesian Method
The importance of predicting bankruptcy risk of firms is increasing because of later financial crisis. Despite practical researchers trying to present models for predicting this risk, it seems that an optimum and acceptable model that is reliable for financial statement users and auditors in order to increase their ability in decision making and professional judgment has not been presented yet....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biostatistics
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2012